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Abstract
We calculate the binding energies for shallow impurities in multiple V-groove
GaAs/AlGaAs quantum wires using a variational technique. The carrier ground
states are calculated by an effective potential method together with a suitable
coordinate transformation which allows the decoupling of the two-dimensional
wavefunction. We present results as a function of impurity position in each
wire of multiple quantum wire structures. The dependence of the donor binding
energies on the parameters of the wire is discussed. We demonstrate that the
interaction between the wires and the symmetry of the impurity wavefunction
both have a significant effect on the binding energies in multiple quantum wires.

1. Introduction

The electronic and optical properties of quantum wires have attracted increasing attention
recently. Several growth techniques have been successful in obtaining a type of heterostructure
known as V-groove or ridge quantum wires. These V-groove structures, single and multiple
quantum wires, have been obtained for a variety of II–VI and III–V materials [1–8]. Several
optical techniques have revealed properties mainly associated with quantum confined excitonic
transitions and also localized excitons from interface monolayer fluctuations [9–19]. Some
photoluminescence (PL) spectra also show peaks that have not been clearly identified [9,11,18].
To fully understand the optical and electronic properties of V-groove quantum wires a
description of the impurity properties would be important. Impurity-related transitions may
be the origin of some of the unknown peaks.

A crucial aspect for theoretical calculations of the physical properties of V-groove quantum
wires is to obtain the energy levels and wavefunctions. Several theoretical approaches have
been presented: Sa’ar et al [20] proposed a local-envelope states expansion, Pescetelli et al [21]
used a tight-binding approach for T- and V-shaped quantum wires, and Ammann et al [22]
used a quasi-factorization scheme. However, in general the 2D effective mass Schrödinger
equation has been calculated numerically using either plane-wave expansion [23–28] or by
adapting finite element methods [29]. Recently we proposed an effective potential method [30]
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which considerably eases the calculation of energy levels and wavefunctions in V-groove
quantum wires.

The calculation of shallow impurities in square and circular quantum wires is currently
well established [31–34]. However, the variational technique employed for the calculation is
numerically intensive if the wire is not circular. Due to the complicated form of the potential
profile in V-groove quantum wires the calculation of shallow impurity states may become
impractical, or at least restricted to a few impurity positions, if the method of calculation
of the carrier ground states is also numerically intensive. Deng et al presented calculated
donor [35] and acceptor [36] binding energies in single V-groove quantum wires at some
specific impurity positions using a coordinate transformation. In a previous paper [37] we
reported on the calculation of shallow impurity binding energies in single V-groove quantum
wires. We showed that the use of an effective potential method for the calculation of the ground
state [30] considerably simplifies the numerical calculation.

For experimental studies of V-groove quantum wires it is important to have a theoretical
description of the impurity levels in addition to other physical properties. For instance, for
the study of PL spectra it is important to identify the observed peaks as impurity-related or
else be able to rule them out as such. The presence of additional structures, such as vertical
quantum wells and pinch-off regions, adds new energy states into an already complicated
spectrum emphasizing the necessity for a complete level structure calculation. For calculations
of impurity-related optical properties, such as impurity absorption coefficients and PL spectra,
a detailed knowledge of the impurity binding energy is needed over all spatial regions of the
quantum wire. A partial knowledge, for example of a few symmetry points, is not sufficient
for this purpose. This calls for a theoretical model which should be numerically very efficient.

In this work we present a calculation of the donor binding energies in multiple V-groove
quantum wires using the effective potential method proposed in [30]. The purpose of this paper
is to obtain the shallow impurity binding energies and to establish how effectively the shallow
impurity responds to the lateral confinement of multiple V-groove quantum wires. We show
its numerical efficiency and thus provide an important tool for the study of impurity-related
phenomena in multiple V-groove quantum wires.

2. Theory

We first write the Hamiltonian for a Coulombic shallow impurity

H = H0 − e2

4πε[(x − ximp)2 + (y − yimp)2 + z2]1/2
(1)

where

H0 = − h̄2

2m∗ ∇2 + V (x, y) (2)

is the Hamiltonian without the impurity potential. The impurity position is represented by ximp

and yimp, and V (x, y) is the potential profile of the multiple V-groove quantum wire.
We consider multiple quantum wires consisting of N identical quantum wires with well

width LW and barrier width LB. The carrier ground state is calculated assuming the following
potential profile to describe the interface potentials of the V-groove quantum wire [29, 30]

y1(x) = − b tan θ ln[cosh(x/b)] +
LW

2
(3)

y2(x) = y1(x)− LW (4)
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Figure 1. Schematic diagram of the V-shaped interfaces for (a) the original coordinates x, y and
(b) the modified coordinates X, Y .

for the first quantum wire

y3(x) = y2(x)− LB (5)

y4(x) = y3(x)− LW (6)

for the second quantum wire, and so on (see figure 1). LW is the channel width along the y
direction, LB is the barrier width between the wires and b represents the bend width at the top
of the ridge (see figure 1). Here we have defined the angle θ such that 180◦ − 2θ is the angle
between the facets of the ridge, the angle normally referred to in most articles. We then apply
the coordinate transformation [29, 30]

X = x Y = −y − b tan θ ln[cosh(x/b)] Z = z (7)

to the Hamiltonian H0. In the transformed coordinates the potential barrier becomes linear
and resembles that of a multiple quantum well, i.e. it becomes a function of Y only. The
transformed Hamiltonian H0 becomes considerably more complicated as it now contains all
the information about the lateral confinement [30]. Our approximation consists of replacing
all mixed terms of the transformed Hamiltonian by an effective lateral potential [30]

Veff(X) = VX tan θ tanh2(X/b) (8)

where VX is an angle-independent barrier factor. This potential allows the decoupling of the
the two-dimensional Hamiltonian into two one-dimensional Hamiltonians

− h̄2

2m∗
d2f (X)

dX2
+ U(X)f (X) = Exf (X) (9)

− h̄2

2m∗
d2g(Y )

dY 2
+W(Y)g(Y ) = Eyg(Y ) (10)

with the wavefunctions given by φ(X, Y ) = f (X)g(Y ) and the total energy by E = Ex +Ey .
The two-dimensional potential is given by V (X, Y ) = U(X) + W(Y). The Schrödinger
equation in theX-direction, equation (9), now contains only the U(X) potential, equation (8),
which we solve by the Numerov method [38]. In theY -direction the potentialW(y) represents a
multiple quantum well; equation (10) can be solved by usual transfer matrix techniques [39–42].
For more a detailed discussion about this method please see [30].
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The impurity binding energy is calculated using a standard variational technique; for
details see [31, 43, 44]. The trial wavefunction is chosen as

ψ(X, Y,Z) = Nφ(X, Y ) exp
{ − [

(X −Ximp)
2 + (Y − Yimp)

2 + Z2
]1/2

/λ
}

(11)

where Ximp, Yimp is the impurity position in transformed coordinates and λ is the variational
parameter. φ(X, Y ) is the ground state wavefunction without the impurity, i.e. the
eigenfunction of H0 obtained in transformed coordinates. All calculations are carried out
in transformed coordinates. The binding energy EB = E0 − E is obtained by numerically
minimizing the energy E with respect to the variational parameter λ, where E0 is the ground
energy level without the impurity. In the appendix we outline some important simplifications
that reduce the numerical computation considerably. To the best of our knowledge, these
simplifications have not yet been presented elsewhere.

3. Results and discussion

We present results for GaAs/Al0.3Ga0.7As V-groove quantum wires and we discuss the binding
energies for donor impurities as a function of impurity position in the wire. We used the
effective masses for GaAs of 0.067m0 and a dielectric constant of 13.18ε0 [45]. The effective
Bohr radius for these parameters is a0 = 9.75 nm. The barrier height is 264 meV for the
conduction band [29]. Also, we use a barrier factor VX of 42.4 meV for the conduction
band [30]. The angle is θ = 54.75◦ such that 180◦ − 2θ corresponds to the measured angle
between the two facets of the ridge [29,30]. For comparison we also consider a smaller angle
(larger angle between the facets) of θ = 30◦, since we notice that for multiple V-groove
quantum wires the angle between the facets (180◦ −2θ ) becomes increasingly larger (e.g. [7]).
In this section we will refer to the wires shown in the figures as first, second and third counting
from top to bottom.

The donor binding energies as a function of the impurity position ximp and yimp are
presented in figure 2 for double V-groove quantum wires with a channel width of 4 nm and
bend width of 4 nm. The barrier width between the two wires is also 4 nm. The contour plots
show curves with the same impurity binding energy, which is incremented by 1 meV for each
curve towards the centre of the wire. For the first (upper) quantum wire the binding energies
are larger, 16.4 meV at the centre, than for the second (lower) wire, 15.5 meV. Both are smaller
than the binding energy of 23 meV for a single quantum wire with the same width [37]. This
is an effect of delocalization of the impurity wavefunction due to the presence of a second
wire. Figure 3 shows the impurity wavefunctions at the centre of each quantum wire. The
wavefunction for a donor located at the centre of the first wire can now penetrate into the second
wire. However, the wavefunction of donor located at the centre of the second wire is even less
confined (and therefore has a lower binding energy) and penetrates quite considerably into the
first wire. This asymmetry results from the lateral confinement due to the bend in the wire.

For a triple quantum wire structure, shown in figure 4, the largest binding energy is
15.8 meV at the second wire. This is smaller than the largest binding energy for double quan-
tum wires with the same widths. The first and third wire present smaller binding energies, 12.9
and 11.9 meV, respectively. Now the second wire has the most symmetric wavefunction (see
figure 5(b)) and thus a stronger impurity localization. The binding energies depend mainly on
two factors regarding the wavefunction: confinement due to the barrier and its symmetry. For
quantum wire structures with larger wires these effects are much less pronounced, as shown in
figure 6, since there is less interaction between the wires. Again, the largest binding energy is
for the second wire (15.8 meV), while the first and third wires have smaller binding energies
(14.4 and 12.6 meV respectively). Note that the binding energies are more similar for each wire,
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Figure 2. Calculated donor binding energies as a function of the impurity position ximp and yimp
for a double quantum wire structure. The contour plots show curves with the same binding energy
listed in meV (for some curves), the energy increments by 1 meV for each curve towards the centre
of the wire. The dimensions of the V-groove quantum wire are b = LW = LB = 4 nm and
angle θ = 54.75◦.
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Figure 3. Contour plots for |ψ(x, y, 0)|2 for a donor located at (a) ximp = yimp = 0 and
(b) ximp = 0, yimp = −8 nm for the same structure as shown in figure 2. The outermost dashed
curve is for 0.2 a−3

0 , with increments of 0.2 a−3
0 between each dashed curve. For full curves, the

outermost is 2 a−3
0 , with increments of 1 a−3

0 .
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Figure 4. Calculated donor binding energies as a function of the impurity position ximp and yimp
for a triple quantum wire structure. The contour plots show curves with the same binding energy
listed in meV (for some curves), the energy increments by 1 meV for each curve towards the centre
of the wire. The dimensions of the V-groove quantum wire are b = LW = LB = 4 nm and
angle θ = 54.75◦.
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Figure 5. Contour plots for |ψ(x, y, 0)|2 for a donor located at (a) ximp = yimp = 0 and
(b) ximp = 0, yimp = −8 nm for the same structure as shown in figure 4. The outermost dashed
curve is for 0.2 a−3

0 , with increments of 0.2 a−3
0 between each dashed curve. For full curves, the

outermost is 2 a−3
0 , with increments of 1 a−3

0 .
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Figure 6. Calculated donor binding energies as a function of the impurity position ximp and yimp
for a triple quantum wire structure. The contour plots show curves with the same binding energy
listed in meV (for some curves), the energy increments by 1 meV for each curve towards the centre
of the wire. The dimensions of the V-groove quantum wire are b = LB = 4 nm, LW = 8 nm and
angle θ = 54.75◦.

which is to be expected as there is less interaction between the wires. Also, they are all smaller
when compared with the thinner wire structure as there is less confinement. Figure 7 shows the
results for a triple quantum wire structure with a smaller angle θ . The largest binding energy is
also at the centre of the second wire. The binding energies are all smaller than those for the pre-
vious structures due to a weaker lateral confinement. They are also more similar for each wire.

Figure 8 shows the variation of the on-centre binding energies as a function of structure
parameters: well width, barrier width and bending angle. The dependence on the effective
potential parameter VX (barrier factor) is also shown in figure 8(d). Note that it takes
a considerable variation in the barrier factor to significantly change the binding energies.
Therefore, the binding energies are not sensitive to small variations in the barrier factor VX.
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Figure 7. Calculated donor binding energies as a function of the impurity position ximp and yimp
for a triple quantum wire structure. The contour plots show curves with the same binding energy
listed in meV (for some curves), the energy increments by 1 meV for each curve towards the centre
of the wire. The dimensions of the V-groove quantum wire are b = LW = LB = 4 nm and
angle θ = 30◦.

It can be noted that the donor binding energy depends on the details of the structure in
a non-trivial way. The confinement, the interaction between the wires and also the structure
symmetry are important determinants of the donor properties. In general, a more confined and
more symmetric impurity wavefunction results in larger binding energies.

The results for double and triple quantum wire structures already show the main features
of the binding energies in multiple quantum wire structures. However, there is no limit or
constraint to calculating the binding energies for structures with an arbitrary number of quantum
wires. Due to the complete decoupling of wavefunctions the computational cost of calculating
the impurity binding energy is independent of the number of wires. For structures with a large
number of quantum wires, the binding energies become smaller overall, as shown in figure 9
for a multiple quantum wire structure with 10 quantum wires. Also, the asymmetry effects are
less visible for such large structures. Nonetheless, the overall physical properties are much the
same as for the double and triple quantum wires.

4. Conclusion

We have studied the shallow donor properties in multiple V-groove quantum wires. The
binding energies are calculated by an effective potential method. We show results as a
function of impurity position in each wire of multiple quantum wires and we demonstrate
that the dependence of the donor binding energies on the structure parameters is non-trivial.
In multiple quantum wire structures the interaction between the wires and the symmetry of the
impurity wavefunction have a significant effect on the binding energies.
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Figure 8. Calculated donor binding energies as a function of (a) well width, (b) barrier width,
(c) bending angle and (d) barrier factor. Full (dashed) curves are for a double (triple) quantum wire
structures. The numbers for each curve indicate the wire where binding energies were calculated.
The actual impurity position is for the centre of its corresponding wire. Structure parameters are
LW = 4 nm, LB = 4 nm, θ = 54.75◦ and VX = 42.4 meV unless indicated otherwise.
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Figure 9. Calculated donor binding energies as a function of the impurity position ximp and yimp
for a quantum wire structure with 10 wires. The contour plots show curves with the same binding
energy listed in meV (for some curves), the energy increments by 1 meV for each curve towards the
centre of the wire. The dimensions of the V-groove quantum wire are b = LW4 nm, LB = 2 nm
and angle θ = 54.75◦.

Appendix. Simplification of the kinetic energy and confinement terms

The expectation energy E = 〈ψ |H |ψ〉 can be separated into three terms. The kinetic energy
term

K = 〈ψ | − h̄2

2m∗ ∇2|ψ〉 (A.1)
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the term due to the two-dimensional confining potential

C = 〈ψ |V (x, y)|ψ〉 (A.2)

and the impurity potential term

I = 〈ψ | − e2

4πεr
|ψ〉 (A.3)

with r = [(x − xi)2 + (y − yi)2 + z2]1/2, such that E = K + C + I .
We assume that ψ can be written in the following form

ψ = φ(x, y)e−r/λ φ(x, y) = g(x)f (y) (A.4)

where φ is the ground state without the impurity. Also, we assume that the potential V (x, y)
can be written as

V (x, y) = U(x) +W(y). (A.5)

Then it is straightforward to show that the kinetic energy term becomes

K = h̄2

2m∗λ2
+ Ex + Ey − C (A.6)

where Ex and Ey are the eigenenergies without the impurity in the x and y directions
respectively. This result is obtained by replacing the second-order derivatives of g(x) and
f (x) by

∂2g(x)

∂x2
= 2m∗

h̄2 [U(x)− Ex] g(x) (A.7)

∂2f (y)

∂y2
= 2m∗

h̄2

[
W(y)− Ey

]
f (y) (A.8)

in the kinetic energy term.
The expectation energy becomes simply

E = h̄2

2m∗λ2
+ Ex + Ey + I (A.9)

since the term corresponding to the confining potential in equation (A.2) is cancelled.
The problem is thus reduced to numerically calculating the impurity potential term I in
equation (A.3).
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